Meromorphic solutions of the Riccati differential equation
نویسندگان
چکیده
منابع مشابه
Rational solutions of Riccati differential equation with coefficients rational
This paper presents a simple and efficient method for determining the solution of Riccati differential equation with coefficients rational. In case the differential Galois group of the differential equation (E l) : y = ry, r ∈ C(x) is reducible, we look for the rational solutions of Riccati differential equation θ + θ 2 = r, by reducing the number of check to be made and by accelerating the sea...
متن کاملAn exponential spline for solving the fractional riccati differential equation
In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...
متن کاملAll Admissible Meromorphic Solutions of Hayman’s Equation
We find all nonrational meromorphic solutions of the equation ww′′ − (w′)2 = α(z)w + β(z)w′ + γ (z), where α, β, and γ are rational functions of z. In so doing, we answer a question of Hayman by showing that all such solutions have finite order. Apart from special choices of the coefficient functions, the general solution is not meromorphic and contains movable branch points. For some choices f...
متن کاملAnalytic properties of matrix Riccati equation solutions
For matrix Riccati equations of platoontype systems and of systems arising from PDEs, assuming the coefficients are analytic functions in a suitable domain, the analyticity of the stabilizing solution is proved under various hypotheses. In addition, general results on the analytic behavior of stabilizing solutions are developed. I. NONSTANDARD RICCATI EQUATIONS In [10], [7] and elsewhere contin...
متن کاملMeromorphic solutions of algebraic differential equations
where F is a polynomial in the first k+ 1 variables, whose coefficients are analytic functions of the independent variable z. If the conditions of Cauchy's theorem for the existence and uniqueness of the solution are satisfied, then (0.1) determines an analytic function in a neighbourhood of a given point z0. One of the most difficult problems in the analytic theory of differential equations is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae Series A I Mathematica
سال: 1981
ISSN: 0066-1953
DOI: 10.5186/aasfm.1981.0604